Ohempel
 Trust is earned

Hempel NORSOK coating systems

NORSOK M-501 edition

Hempel NORSOK coating systems

NORSOK M-501 approved systems from Hempel

Hempel is a world leader in the supply of marine and protective coatings to a wide variety of industry segments, including:

- Oil and Gas Upstream
- Petrochemical
- Power
- Marine
- Transport

Our global capabilities allow us to supply our tailored coating solutions anywhere in the world, helping you protect your investment from corrosion. With 28 factories globally and operations in over 80 countries, wherever your next project takes you, you're never far from Hempel.

However, we recognise that our technologically advanced product ranges make up only half the story. Our people make the difference. With a global network of experienced personnel and trained coating advisors to help you deliver your project on time and to specification, Hempel's technical service is second to none.

We recognise that choosing a coatings' supplier is often a tough choice. We are here to make that choice easier.

What is NORSOK M-501?

The NORSOK standards are a series of standards developed by the Norwegian petroleum industry. The purpose of these industry standards is to replace the reduce cost and lead time and to remove unnecessary activities in offshore field developments and operation.

NORSOK M-501 mandates a series of systems based on generic coating type and minimum scheme thicknesses. In addition, for some systems, testing requirements are also necessary for pre-qualification to this standard. A full list of the systems within NORSOK can be found in the Frequently Asked Questions guide.

Each of the published system sheets provide examples of Hempel-recommended schemes, corresponding to the different systems within NORSOK M-501. Where a system requires pre-qualification, this is clearly stated and Hempel systems listed will have been subjected to all of the necessary pre-qualification testing. Where pre-qualification isn't mandatory, a series of
recommended schemes are listed. This document covers only those systems appropriate to edition 5 and/or 6 of the NORSOK M-501 standard.

Exposure conditions

Atmosphere C5M

- Cyclic testing (ISO 20340:2009)
- Three-coat, zinc-rich system requires $\leq 3 \mathrm{~mm}$ scribe creep

Splash/tidal zone C5M + IM2

- Cyclic testing
- Cathodic Protection (CP)
- Water immersion

Immersed IM2

- Cathodic Protection (CP)
- Water immersion

System 1

Structural steel and exteriors of equipment, vessels piping and valves (uninsulated)

System 1: Operating temperature below $120^{\circ} \mathrm{C} / 248^{\circ} \mathrm{F}$
Pre-qualification is required
Zinc silicate

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ((m)
Hempel's Galvosil 15700	60	Hempel's Galvosil 15680	60
Hempaprime Multi 500^{2}	Mist coat	Hempaprime Multi 500²	Mist coat
Hempaprime Multi 500^{2}	160	Hempaprime Multi 500²	160
Hempathane HS 55610	60	Hempathane HS 55610	60
Total	280	Total	280
Product	DFT ($\mu \mathrm{m}$)	Note 1: An optional mist coat (tie-coat) may be specified to avoid popping. Typically, $25 \mu \mathrm{~m}$ of the specified epoxy (diluted, mist coat technique) can be used. Contact your Hempel representative for further details. This note applies to all of the above systems.	
Hempel's Galvosil 15700	60		
Hempadur Quattro XO 17870	Mist coat	Note 2: Both summer and winter versions of Hempaprime Muti 500 are prequalified.	
Hempadur Quattro XO 17870	160		
Hempel's Pro Acrylic 55883	60		
Total	280		
Zinc epoxy			
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 750	60	Hempadur Avantguard 750	60
Hempaprime Multi 500^{2}	160	Hempaprime Multi 500 Winter	160
Hempel's Pro Acrylic 55883	60	Hempathane Speed-Dry Topcoat 250	60
Total	280	Total	280
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 750	60	Hempadur Avantguard 770	60
Hempaprime Multi 500 Summer	160	Hempaprime Multi 500 Winter	160
Hempathane HS 55610	60	Hempathane HS 55610	60
Total	280	Total	280
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 770	60	Hempadur Avantguard 750	60
Hempaprime Multi 500 Summer	160	Hempadur 4774D	160
Hempathane Speed-Dry Topcoat 250	60	Hempathane HS 55610	60
Total	280	Total	280

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 750	60	Hempadur Avantguard 750	60
Hempadur Quattro XO 17870	160	Hempadur 47300	160
Hempel's Pro Acrylic 55883	60	Hempathane HS 55610	60
Total	280	Total	280
Product	DFT ((m)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 770	60	Hempadur Avantguard 770	60
Hempadur Quattro XO 17870	160	Hempadur 4774D	160
Hempel's Pro Acrylic 55883	60	Hempathane HS 55610	60
Total	280	Total	280
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 770	60	Hempadur Avantguard 860	60
Hempadur 47300	160	Hempaprime Multi 500²	160
Hempathane HS 55610	60	Hempathane HS 55610	60
Total	280	Total	280
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Avantguard 860	60	Hempadur Avantguard 860	60
Hempadur Quattro XO 17870	160	Hempadur Quattro XO 17820	160
Hempathane HS 55610	60	Hempathane HS 55610	60
Total	280	Total	280
For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com		Note 1: Subject to owner approval, a pre-qualified topcoat may be substituted for another topcoat if the topcoat thickness and the intermediates remain the same. The topcoat listed is the one tested. Commonly used topcoats, which may be substituted include: - Hempaxane Light 55030 - Hempathane HS 55610 - Hempathane 55210 Hempel's Pro Acrylic 55883 - Hempathane Speed-Dry Topcoat 250 This note applies to all of the above systems	
		Note 2 : Both summer and winter versions of Hempapime Muti 500 are pre-qualified.Note 3 : vantguard is a registered trademark of Hempel A / s.	

System 2

Areas with operating temperatures above $120^{\circ} \mathrm{C} / 248^{\circ} \mathrm{F}$ and/or areas under insulation etc.

System 2A: Consists of $200 \mu \mathrm{~m}$ thermally sprayed aluminium or alloys of aluminium top coated with the following systems.
Pre-qualification is not required

Product	DFT ((1)	Product	DFT ((1m)
Hempadur 15570 (diluted) ${ }^{1}$	25	Hempadur Sealer $05990{ }^{1}$	25
Total	25	Total	25
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempel's Silicone Aluminium 56914/3 ${ }^{1}$ (diluted)	25	Hempadur 85671^{2} Hempadur 85671	$\begin{aligned} & 150 \\ & 150 \end{aligned}$
Total	25	Total	300
		Note 1: Sealer for thermally sprayed alu $120^{\circ} \mathrm{C} / 248^{\circ} \mathrm{F}$. Note 2: Alternative to thermally sprayed at service temperatures below $120^{\circ} \mathrm{C}$	e below faces

System 2B: Consists of $100 \mu \mathrm{~m}$ thermally sprayed zinc or alloys of zinc top coated with the following systems.
Pre-qualification is required (for intermediate and topcoat as per System 1, see Note 2)

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Optional tie-coat	25^{1}	Optional tie-coat	25^{1}
Hempaprime Multi 500^{3}	125	Hempadur 4774D	125
Hempathane HS 55610	75	Hempathane HS 55610	75
Total	225	Total	225
Product	DFT ($\mu \mathrm{m}$)	Note 1: An optional tie-coat (mist coat) may be specified to avoid popping. Typically, $25 \mu \mathrm{~m}$ Hempadur 15590 (diluted) or $25 \mu \mathrm{~m}$ of the specified epoxy (diluted, mist coat technique) can be used. Contact your Hempel representative for further details. This note applies to all of the above systems.	
Optional tie-coat	25^{1}		
Hempaprime Multi 500^{3}	125		
Hempel's Pro Acrylic 55883	75	Note 2: Topcoats which have been pre-qualified in System 1 may also be used for System 2B. Commonly used topcoats, which may be substituted for those listed,	
Total	225	include: - Hempaxane Light 55030 - Hempathane 55210 - Hempathane Speed-Dry Topcoat This note applies to all of the abo	
For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com		Note 3 : Both summer and winter versions of Hempaprime Multi 500 are pre-qualified	

system 3

Internal surface of carbon steel vessels

System 3A: Potable water tanks
Pre-qualification is not required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur 35560 WRAS $35^{\circ} \mathrm{C}$, NSF	300	Hempadur 35600 WRAS $60^{\circ} \mathrm{C}$	300
Hempadur 35560	300	Hempadur 35600	300
Total	600	Total	600
Product	DFT ($\mu \mathrm{m}$)	WRAS $23^{\circ} \mathrm{C}=$ Water Regulations Advisory Scheme, UK (Approved for potable water up to $23^{\circ} \mathrm{C} / 73^{\circ} \mathrm{F}$). WRAS $35^{\circ} \mathrm{C}=$ Water Regulations Advisory Scheme, UK (Approved for potable water up to $35^{\circ} \mathrm{C} / 95^{\circ} \mathrm{F}$). WRAS $60^{\circ} \mathrm{C}=$ Water Regulations Advisory Scheme, UK (Approved for potable water up to $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$). NSF = NSF International	
Hempadur Multi-Strength 35530 WRAS $23^{\circ} \mathrm{C}$, NSF	300		
Hempadur Multi-Strength 35530	300		
Total	600		
		Note 1: Potable water requirements generally come under the regulatory guidance of the country where the facility will be installed. The above are an example of approvals these products hold but are not exhaustive. Consult your Hempel representative for further guidance.	

System 3B: Ballast tanks

Pre-qualification is required ${ }^{2}$

Product	DFT $(\mu \mathrm{m})$	Product	DFT $(\mu \mathrm{m})$
Shopprimer	20	Shopprimer	20
Hempadur Quattro XO 17720	160	Hempadur Quattro XO 17870	160
Hempadur Quattro XO 17720	160	Hempadur Quattro XO 17870	160
Total	$\mathbf{3 4 0}$	Total	340
Product			
Shopprimer	DFT $(\mu \mathrm{m})$	Product	DFT $(\mu \mathrm{m})$
Hempadur Quattro XO 17820	20	Shopprimer	20
Hempadur Quattro XO 17820	160	Hempadur BT 35750	160
Total	160	Hempadur BT 35750	160

Note 1: Various optional shop primers are approved - contact Hempel for details. This note applies to all of the coating systems listed in System 3 B.
 Note 3: Care should be taken to avoid excessive temperature gradients from adiacents storage areas. For temperature gradients above $15^{\circ} \mathrm{C}$ contact Hempel technical support. This note
applies to al of the above systems in System 38 .

System 3C: Tanks for stabilised crude, diesel and condensate Pre-qualification is not required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Quattro XO 177201	160	Quattro XO 17820 ${ }^{1}$	160
Quattro XO 17720¹	160	Quattro XO 17820¹	160
Total	320	Total	320
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Quattro XO 17870¹	160	Hempadur 15600²	160
Quattro XO 178701	160	Hempadur 15600	160
Total	320	Total	320
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur 85671^{3}	150	Hempadur 85671^{4}	100
Hempadur 85671	150	Hempadur 85671	100
Total	300	Hempadur 85671	100
		Total	300
Product	DFT ($\mu \mathrm{m}$)		
Hempaline Defend 400 ${ }^{2}$	300	Note 1: Content of aromates should be less than 15%. Maximum service temperature is $40^{\circ} \mathrm{C} / 104^{\circ} \mathrm{F}$. Loading and offloading up to $85^{\circ} \mathrm{C} / 185^{\circ} \mathrm{F}$.	
Hempaline Defend 400	300	Note 2: Maximum service temperature is $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$. Looading and offloading up to $85^{\circ} \mathrm{C} / 185^{\circ} \mathrm{F}$.	
Total	600		
		Note 3: Maximum service temp	
Product	DFT ($\mu \mathrm{m}$)	Note 4: Maximum service temp	
Hempaline Defend 6304	300	Note 5: Care should be taken to avoid excessive temperature gradients from adjacent storage areas. For temperature gradients above $15^{\circ} \mathrm{C}$ contact Hempel technical support. This note applies to all of the above systems in System 3C.	
Hempaline Defend 630	300		
Total	600	Note 6: Approved to IMO Resolution MSC. 288 (87):2010 - Annex II test procedures for coating qualification for cargo oil tanks of crude oil tankers. This note applies to all of the coating systems listed in System 3C.	

System 3D, 3E and 3F: Process vessels
Pre-qualification is not required
System 3D: Process vessels < 3 bar, $<75^{\circ} \mathrm{C} / 167^{\circ} \mathrm{F}$
System 3E: Process vessels < 70 bar, $<80^{\circ} \mathrm{C} / 176^{\circ} \mathrm{F}$
System 3F: Process vessels < 30 bar, $<130^{\circ} \mathrm{C} / 266^{\circ} \mathrm{F}$

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur 85671	100	Hempaline Defend 630	300
Hempadur 85671	100	Hempaline Defend 630	300
Hempadur 85671	100	Total	600
Total	300		
		Note 1: Suitability is subject to confirmation of actual operating conditions. This note applies to all systems in System 3D, 3E and 3F.	
Product	DFT ($\mu \mathrm{m}$)	Note 2: For senvice temperatures up to $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$.	
Hempadur $85671{ }^{2}$	150		
Hempadur 85671	150		
Total	300		

System 3G: Vessels for storage of methanol, MEG etc
Pre-qualification is not required

Product	DFT $(\mu \mathrm{m})$
Hempel's Galvosil 15700	100
Total	100

For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com

System 6

Other metals when painting
is required

System 7

Submerged carbon and stainless steel including the splash zone

System 6A: Stainless steel and aluminium
Pre-qualification is not required

Product	DFT $(\mu \mathrm{m})$
Hempadur 15570 or 15590	50
Hempaprime Multi 500	100
Hempel's Pro Acrylic 55883^{2}	75
Total	$\mathbf{2 2 5}$
Sweep blasting	

System 6B: Hot dip galvanized steel
Pre-qualification is not required

Product	DFT ($\mu \mathrm{m}$)	- Hempathane Speec-Dry Topcoat 250
Hempadur 15553	50	
Hempaprime Multi 500	100	
Hempel's Pro Acrylic $55883{ }^{2}$	75	
Total	225	
No sweep blasting		
For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com		

System 6C: Insulated stainless steel piping and vessels at temperatures $<150^{\circ} \mathrm{C}$
Pre-qualification is not required

Product	DFT $(\mu \mathrm{m})$
Hempadur 85671	125
Hempadur 85671	125
Total	250

Sweep blasting
Note 1 : As pre-uualification is not reauired additional systems may also be recommended.
Contact your Hempel representative for further details. This note applies to al of the above ystems.
Note : TTopoats which have been pre-qualifed in System 1 may also be sed for Systems
CA And 6 GB. Commonly sued topocoats, which may be substituted tor those isted, include: Hempaxane Light 55030
Hempathane HS 55610

- Hempathane Speed-Dry Topcoat 250

System 7A: Carbon and stainless steel in the splash zone Pre-qualification is required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur 35560	300	Hempadur Multi-Strength 35460	300
Hempadur 35560	300	Hempadur Multi-Strength 35460	300
Total	600	Total	600
Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Multi-Strength 35620	300	Hempadur 15590	50
Hempadur Multi-Strength 35620	300	Hempadur Multi-Strength 35460	300
Total	600	Hempadur Multi-Strength 35460	300
		Total	650
Product	DFT ((1m)		
Hempadur Multi-Strength 45703	300	Product	DFT ($\mu \mathrm{m}$)
Hempadur Multi-Strength 45753	300	Hempadur Avantguard 770	60
Hempathane HS 55610	60	Hempadur Multi-Strength 35620	240
Total	660	Hempadur Multi-Strength 35620	240
		Hempathane HS 55610	60
Product	DFT ($\mu \mathrm{m}$)	Total	600
Hempadur Avantguard 770	60		
Hempadur 35560	240	Product	DFT ($\mu \mathrm{m}$)
Hempadur 35560	240	Hempadur 15590	20^{1}
Hempathane HS 55610	60	Hempadur Spray-Guard 35493	3000
Total	600	Total	3020
Product	DFT ($\mu \mathrm{m}$)	Note 1: According to ISO 19840 Note 2: Avantguard ${ }{ }^{\ominus}$ is a registered trademark of Hempel A/S	
Hempadur Multi-Strength 35620	275		
Hempadur Multi-Strength 35620	275		
Hempathane HS 55610	60		
Total	610		

System 7A: Carbon and stainless steel in the splash zone continued

Pre-qualification is required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Multi-Strength 35840	300	Hempadur Multi-Strength 35842	750
Hempadur Multi-Strength 35840	300	Hempadur Multi-Strength 35842	750
Total	600	Total	1500
Product	DFT ($\mu \mathrm{m}$)		
Hempadur Avantguard 770	60		
Hempadur Multi-Strength 45753	240		
Hempadur Multi-Strength 45753	240		
Hempathane HS 55610	60		
Total	600		

System 7B:

Submerged carbon and stainless steel $\leq 50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
Pre-qualification is required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempadur Multi-Strength 45703	175	Hempadur 15590	50
Hempadur Multi-Strength 45753	175	Hempadur Multi-Strength 35840	300
Total	350	Total	350
Product	DFT ($\mu \mathrm{m}$)	Note 1: Only preaualified in aluminium shades.	
Hempadur Quattro XO $17720{ }^{1}$	175	Note 2: Systems approved for System 7A shall also meet the requirements for System 7B if applied at the film thickness for which System 7A approval was granted.	
Hempadur Quattro XO 17720	175		
Total	350		

System 7C:

Submerged carbon and stainless steel $>50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
Pre-qualification is required

Product	DFT ($\mu \mathrm{m}$)	Note 1: Pre-qualified for steel temperature up to $150^{\circ} / / 300^{\circ} \mathrm{F}$.
Hempadur 85671^{1}	125	
Hempadur 85671	125	
Hempadur 85671	100	
Total	350	

For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com

System 8

Structural carbon steel

Structural carbon with an operating temperature of $80^{\circ} \mathrm{C} / 176^{\circ} \mathrm{F}$ in internal, fully dry and well ventilated areas.
Pre-qualification is not required

Product	DFT ($\mu \mathrm{m}$)	Product	DFT ($\mu \mathrm{m}$)
Hempel's Galvosil 15700	60	Hempadur Avantguard 750	60
Hempadur 15570 (diluted 20 percent)	25	Hempadur 15570 (diluted 20 percent)	25
Total	85	Total	85
Product	DFT ($\mu \mathrm{m}$)	Note 1: May be topcoated as required. Commonly used topcoats include: - Hempaxane Light 55030 - Hempathane HS 55610 - Hempathane 55210 - Hempel‘s Pro Acrylic 55883 - Hempathane Speed-Dry Topcoat 250 This note applies to all of the above systems.	
Hempadur Avantguard 860	60		
Hempadur 15570 (diluted 20 percent)	25		
Total	85		
Product	DFT ($\mu \mathrm{m}$)	Note 2: As pre-qualification is not required additional systems may also be recommended. Contact your Hempel representative for further details.	
Hempaprime Multi 500	150		
Total	150	Note 3: Avantguard ${ }^{\text {® }}$ is a registered trademark of Hempel A / S.	

[^0]
System 9

Valves

Bulk supplied carbon steel valves with operating temperatures up to $150^{\circ} \mathrm{C} / 302^{\circ} \mathrm{F}$.
Pre-qualification is not required

Product	DFT $(\mu \mathrm{m})$
Hempadur 85671	150
Hempadur 85671	150
Total	300
Product	DFT $(\mu \mathrm{m})$
Versiline CUI 56990	200
Versiline CUI 56990	200
Total	400

Note 1: For temperatures above $150^{\circ} \mathrm{C}$ thermally sprayed aluminium shall be used. This note applies to all of the above systems.

Note 2: An alternative system if agreed with the purchaser may be 1×75
$\mu \mathrm{~m}$ zinc ethyl silicate and an epoxy tie-coat in accordance with System 1 . Einal coating shall then be done after insulation. Hempel recommend that this is used for uninsulated items only.
Note 3 : Versiline ${ }^{\star}$ is a registered trademark of Hempel A / S.

For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com

Hempel NORSOK coating systems

What is NORSOK M-501?

Do all systems need to be tested to comply with NORSOK?
Carbon steel with operating temperature below $120^{\circ} \mathrm{C} / 248^{\circ} \mathrm{F}$ - Structural steel

- Exteriors of equipment, vessels, piping and valves (not insulated)

System 2

Areas with operating temperatures above $120^{\circ} \mathrm{C} / 248^{\circ} \mathrm{F}$ and/or areas under insulation etc

System 3A-3G (System 3B pre-qualified)

Internal surface of carbon steel vessels

System 4 (pre-qualified)

Walkways, escape routes and lay down areas
System 5A (pre-qualified)
Passive fire protection
System 5B (pre-qualified)
Cement-based fire protection

System 6A

Uninsulated stainless steel when painting is required. Aluminium when painting is required

System 6B

Hot-dipped, galvanised steel when painting is required
System 6C
Insulated stainless steel piping and vessels at temperatures $<150^{\circ} \mathrm{C} / 302^{\circ} \mathrm{F}$

System 7A (pre-qualified)

Carbon and stainless steel in the splash zone

System 7B (pre-qualified)

Submerged carbon and stainless steel $\leq 50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
System 7C (pre-qualified)
Submerged carbon and stainless steel $>50^{\circ} \mathrm{C} / 122^{\circ} \mathrm{F}$
System 8
Structural carbon steel with an operating temperature of $<80^{\circ} \mathrm{C} / 176^{\circ} \mathrm{F}$ in internal, fully dry and well ventilated areas

System 9

Bulk supplied carbon steel valves with operating temperatures up to $150^{\circ} \mathrm{C} / 302^{\circ} \mathrm{F}$
Note: DFT = dry film thickness
NORSOK M-501 is a standard document developed by the Norwegian petroleum industry to ensure adequate safety, value adding and cost effectiveness for petroleum industry developments and operations. It is intended to replace oil company specifications for offshore installations where possible.
No, not all of the sections of NORSOK require testing, referred to as pre-qualification. The main sections which require pre-qualification are System 1, System 3B, System 4 , System 5A/5B and System 7A/B/C.
For the remaining systems it is permitted to offer any coating schemes provided they meet the generic requirements and minimum DFT's listed for that system. In the case of Systems 2B, 6A and 6B it is required that certain parts of the proposed coating scheme have already been pre-qualified according to other systems.

> NORSOK is not a test method. It is a standard document which lists different test methods and acceptable values for various offshore uses and environments. The type of pre-qualification testing which is required depends upon the system the coating scheme is being proposed for. Many of the pre-qualification requirements are currently based around ISO 20340:2009 with additional supplementary testing being
Systems are not approved by NORSOK, manufacturers simply claim whether they are in compliance with the standard or not. The primary means of evidence of compliance is via a mandatory third party laboratory report which will clearly
state whether the coating scheme tested is compliant with the standard or not. Many coating manufacturers keep lists of their compliant systems either in print
or on their internet sites. This may or may not be their complete listings.

NORSOK allows coating schemes that have been tested to previous revisions provided several rules have been followed.
 For full guidance on whether specific previous testing is compatible with the current

 standard then please contact your local Hempel representative.No, pre-qualification must be carried out at an independent test laboratory. Suppliers can of course test in house to the same standard and this is often done prior to submitting a coating scheme for external testing to gauge the likelihood of success.
Many of the exposure periods in the NORSOK standard require 4200 hours test exposure (6 months approximately). When preparation of test panels, supplementary testing, post-exposure inspection and report writing is taken into consideration testing may exceed 9 months. There is no way to accelerate this timeframe and it should be considered when asking for new schemes to be pre-qualified.
Whilst currently NORSOK Edition 6 continues to reference ISO 20340 and as such has no direct correlation with the new ISO 12944:2018 Part 9 standard, the fact that they use the same test parameters should mean that comparisons could be made.
However the results of any testing to the new ISO 12944:2018 Part 9 standard should be reviewed against the acceptance criteria for the current edition of Norsok M-501.

What is the connection between NORSOK systems and those systems mentioned in ISO 12944:2018 Part 9?

System 1

I have been told that the topcoat can be changed in systems that have been pre-qualified. s that correct?

Some companies claim to have non zinc schemes that are approved to NORSOK System 1. How come?

What about using

a shop primer?
Is this permitted?

Yes it is correct. However, there are certain rules that must be considered Firstly, you can only swap the topcoat, provided that the intermediate coat remains the same. Secondly, the DFT of the alternate topcoat should be the same as that of the approved one.

Schemes based around non-zinc primers may be pre-qualified according to NORSOK System 1 under certain conditions. Note 6 to System 1 states that specialised systems without zinc can be used if there is a minimum of two coats with total dry film thickness in excess of 1,000 microns, the system has passed the aging test demonstrating corrosion creep of $<8 \mathrm{~mm}$, and successful prior field experience can be documented.

Use of a $15 \mu \mathrm{~m}$ zinc ethyl silicate shop primer as an integrated part of coating System 1, 3B, 4, 5, 7 or 8 is covered by some strict guidance. Firstly one coating system (System 1 System 3B or System 7) shall be tested with and without the shop primer. If this testing is successful then the shop primer may be used in conjunction with any coating system that has been pre-qualified, whether that pre-qualification included a shop primer or not.

However for System 4 and System 5 the whole system including shop primer must be pre-qualified.

Can I use any zinc rich primer for System 1?

What about the use of tie coats? Do they need to be pre-qualified for System 1?

Once pre-qualified all coating schemes are considered equal. Is this correct?

Is there any situation where I can pre-qualify a non zinc coating for System 1?

Whilst System 1 does not distinguish between the various type of zinc rich primer it does state that they must meet the requirements of ISO 12944-5. Both zinc epoxy and zinc silicate types are accepted. Minimum 80% Zn-dust in dry film.

The use of tie coats relates to zinc rich primer systems. NORSOK guidance is not 100% clear on this issue but states "This tie-coat/sealer shall either be of a hickness below 50 um or pre-qualified as a part of the coating system" implying that provided it is below 50 microns pre-qualification is not required. Hempel tries to avoid any doubt and usually pre-qualifies systems with a tie coat, at least for zinc silicates.

[^1]
System 2

System 2 is not about paints?
is that correct?

As pre-qualification is not required can any coating be used?

System 2, although primarily dealing with thermally sprayed metals is also one of the systems considering corrosion under insulation which is an important topic in the offshore oil and gas industry. It provides some guidance on where paint systems can be used in this area. It also covers the guidelines for sealing of thermally sprayed metals an important component in their success

For further guidance on which schemes are suited consult the Hempel NORSOK M501 system sheet or your local Hempel representative. Note also that for System 2B the intermediate and topcoat should also have been pre-qualified as per System 1 though not necessarily at the same thickness.

System 3A

NORSOK is a
Norwegian developed standard so do I need
Norwegian potable
water approval?

System 3B

Hempel has a lot of systems approved for 3B. Have they all been tested according to NORSOK?

System 3C

Does the same apply for cargo oil tanks? Can I use IMO testing to pre-qualify for System 3C?

No, potable water requirements generally come under the regulatory guidance of the country where the facility will be installed. Consult the owner for further clarification

Pre-qualification to System 3B may also be carried out by testing to IMO MSC. 215 82). As this is a standard requirement for many marine vessels, Hempel has a significant number of systems listed. Note that IMO also lists an alternate testing method. Coatings submitted via the alternate route cannot be considered as pre-qualified for NORSOK M-501 System 3B.

System 3 C does not require pre-qualification so there is no specific requirement although increasingly it is common that owners will prefer accreditation to IMO MSC 288 (87): 2010. Note the difference in coverage areas between IMO and NORSOK in relation to tank tops

System 3D, 3E and 3F

Systems 3D, 3E and 3 F don't require pre-qualification.
What types of coatings can be used?

These systems are often used for process equipment operating at elevated temperature and pressure. As the conditions in these types of vessels can vary from field to field it is essential that you fully understand the operating conditions that you are dealing with. Contact your local Hempel representative for further information.

System 4

Do I have to coat whole deck areas in the thick film systems described in System 4?

System 5A

Can Hempel
topcoats be used
for System 5A?
Yes, Hempel topcoats may be offered for System 5. Prior to application of the topcoat a tie coat must be utilised for the system. Top coating should be in accordance with the passive fire protection manufacturers recommendations. As NORSOK pre-qualified schemes are typically tested without topcoat the choice of an alternate topcoat does not typically affect NORSOK pre-qualification.

No, the coating schemes described for System 4 relate to walkways, escape routes and laydown areas. Coating schemes that have been pre-qualified according to System 1 can be used for remaining deck areas.

System 5B

Are the rules
any different for
System 5B?

System 6

Can any coatings used for carbon steel also be used on stainless steel?

Ok, apart from zinc containing coatings is there anything else that applies here?
-

System 7

System 7 is a single system that requires to be pre-qualified, correct?

How different are the pre-qualification requirements?

Are systems pre qualified for System 7A also pre-qualified for System 7B?

The system describes use on carbon steel and stainless steel. Which substrate is pre-qualification carried out on?

What temperature do I carry out my elevated temperature cathodic disbondment at for System 7C?

No. System 7 is actually made up of three discrete systems, 7A, 7B and 7 C the pre-qualification requirements for which are different. System 7A relates to the splash zone, whereas System 7B relates to submerged areas at temperatures ess than $50^{\circ} \mathrm{C}$. System 7 C relates to submerged areas at operating emperatures $>50^{\circ} \mathrm{C}$ and is often used to pre-qualify coating systems for sub-sea pipework and process equipment.

In short all of the systems require immersion and cathodic disbondment testing which is the basic requirement of System 7B. In addition to this, System 7A also requires the same aging resistance testing used in System 1 to take into account changing conditions in the splash zone. System 7C uses immersion and cathodic disbondment, however the cathodic disbondment testing is carried out at higher temperatures.

Yes but only at the total dry film thickness for which pre-qualification for System 7A was carried out. Minimum DFT requirements are different and 7A systems are generally not competitive for 7 B although they fulfil all requirements.

In short, pre-qualification is usually carried out on carbon steel but the resulting pre-qualification is subsequently valid for both, remembering that coatings containing zinc (and certain other impurities) shall not be used on stainless stee under any circumstances. Stainless steel shall be blasted with chloride free non-metallic abrasive.

The choice of temperature is up to the supplier pre-qualifying their product, however once tested the pre-qualification is only valid for temperatures up to that temperature which was tested. Note that to qualify for temperatures $>100^{\circ} \mathrm{C}$ requires the electrolyte to be pressurised and requires very specialist test equipment.

System 8

System 8 is also for structural carbon steel how does it differ from System 1?

But what if it has to be transported/stored outside before going into service?

System 8 is for structural carbon steel for temperatures $<80^{\circ} \mathrm{C}$ that is in a dry and fully ventilated area. Because of this it allows non-zinc systems to be used. However, the system should not be used on surfaces where water condensation may occur.

If this is the case then coating System 1 shall be utilised.

System 9

System 9 describes
bulk supplied valves.
What does this
mean exactly?
That sounds
problematic, how does NORSOK control this?

Are epoxy phenolics the only systems that can be used?

Bulk valves are valves that are supplied against certain performance requirements but where their exact usage may not be known at the time of ordering. As a result of this it may sometimes be difficult to identify what coating system is required.

NORSOK controls this in a number of ways. Firstly it restricts the temperature range for this category to less than $<150^{\circ} \mathrm{C}$. Secondly it limits the metal type to carbon steel. Finally it requires that where the service conditions are known at the time of ordering then the applicable NORSOK coating system must be selected.

No. NORSOK allows for an alternative system including Zinc Silicate and
an epoxy tie coat prior to final coating after installation. The epoxy tie coat must be in accordance with System 1. Hempel does not recommend the use of zinc based systems beneath thermal insulation.

These questions and answers are based upon NORSOK M-501 Edition 6 February 2012 and are not necessarily applicable to earlier revisions.

These comments are intended for guidance only. In some cases the wording of the standard may be open to individual interpretation. For further clarification consult Hempel business support.

It is recommended that this document is read in conjunction with the standard document itself.

The standard document is available at https://www.standard.no/en/sectors/ energi-og-klima/petroleum/norsok-standard-categories/m-material/m-5014/

About Hempel

As a world-leading supplier of trusted coating solutions, Hempel is a global company with strong values, working with customers in the protective, marine, decorative, container and yacht industries. Hempel factories, R\&D centres and stock points are established in every region.

Across the globe, Hempel's coatings protect surfaces, structures and equipment. They extend asset lifetimes, reduce maintenance costs and make homes and workplaces safer and more colourful. Hempel was founded in Copenhagen, Denmark in 1915. It is proudly owned by the Hempel Foundation, which ensures a solid economic base for the Hempel Group and supports cultural, social, humanitarian and scientific purposes around the world.

Hempel A/S

Lundtoftegaardsvej 91
2800 Kgs. Lyngby
Denmark

Tel: +45 45933800
Email: norsok@hempel.com
norsok.hempel.com

[^0]: For advice on regional product availability and additional schemes, please contact your local Hempel representative or email protective@hempel.com

[^1]: No. NORSOK suggests that for external surfaces those schemes with a chalking rating of 1 or better should be shown preference. Of course operators can also express preference based upon the test results. Generally but not always, for System 1 they will use the corrosion creep as a means of determining performance.

 Yes. Schemes based around non-zinc primers are permitted to be pre-qualified according to NORSOK System 1 for particularly exposed areas but only under certain conditions. Note 6 to System 1 states that specialised systems without zinc can be used if there is a minimum of two coats with total dry film thickness in excess of 1,000 microns, the system has passed the aging test demonstrating corrosion creep of < 8 mm , and successful prior field experience can be documented.

